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Abstract In this paper the response of an amperometric biosensor at mixed enzyme
kinetics and diffusion limitations is modelled in the case of the substrate and the
product inhibition. The model is based on non-stationary reaction–diffusion equa-
tions containing a non-linear term related to non-Michaelis–Menten kinetics of an
enzymatic reaction. A numerical simulation was carried out using a finite difference
technique. The complex enzyme kinetics produced different calibration curves for the
response at the transition and the steady-state. The biosensor operation is analysed
with a special emphasis to the conditions at which the biosensor response change
shows a maximal value. The dependence of the biosensor sensitivity on the biosensor
configuration is also investigated. Results of the simulation are compared with known
analytical results and with previously conducted researches on the biosensors.

Keywords Modelling · Simulation · Reaction–diffusion · Biosensor · Inhibition

1 Introduction

Biosensors are analytical devices incorporating a biological material, usually an
enzyme, and a physicochemical transducer converting a biochemical recognition reac-
tion into a measurable effect [1–3]. Amperometric biosensors measure the changes in
the output current on the working electrode due to the direct oxidation or reduction of
products of the biochemical reaction. The amperometric response is usually propor-
tional to the concentration of an analyte (substrate) in a buffer solution. Amperometric
biosensors are known to be reliable, cheap and highly sensitive for environment moni-
toring, food analysis, clinical diagnostics, drug analysis and some other purposes [4–7].
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Usually biosensors operate following the Michaelis–Menten kinetics scheme [2,3],

E + S
k1�

k−1
ES

k2−→ E + P, (1)

where E is the enzyme, S is the substrate, ES is the enzyme and substrate complex,
and P is the reaction product, ki is the reaction rate constant, i = −1, 1, 2. However,
very often the kinetics of enzyme-catalysed reactions is much more complex. An inhi-
bition, an activation, an allostery and other types of non-Michaelis–Menten kinetics
are known for the diversity of enzymes [8–12].

The inhibition is a process when a substance (inhibitor) diminishes the rate of a
biochemical reaction [10]. In enzyme-catalysed reactions, the inhibitor frequently acts
by binding to the enzyme. In this paper, a specific case of the non-Michaelis–Menten
behaviour is investigated. It is the case when the enzyme-substrate complex ES inter-
acts with one more substrate molecule producing a non-active complex ESS (the
substrate inhibition) as follows:

ES + S
k3�

k−3
ESS. (2)

In addition, an enzyme molecule interacts with the product molecule producing another
non-active complex EP (the product inhibition),

E + P
k4�

k−4
EP. (3)

The understanding of the kinetic peculiarities of the biosensors is of crucial impor-
tance for their design. To improve the productivity as well as the efficiency of the
biosensor design, a model of the biosensor should be build [13,14]. Starting from the
seventies various mathematical models have been widely used as important tools to
study and optimize analytical characteristics of actual biosensors [15–18]. A compre-
hensive review on the modelling of the amperometric biosensors has been presented
by Schulmeister [19]. Actual biosensors with the substrate as well as the product inhi-
bition have been already modelled at various, usually steady-state, conditions [20–26].
The amperometric biosensors utilizing the enzyme with only the substrate inhibition
has been recently modelled at the external diffusion limitation and the steady-state [12]
as well as the transition conditions [27,28]. At the substrate concentration comparable
to the Michaelis–Menten constant, the response change showed a maximal value [27].

This paper presents the results of non-stationary biosensor modelling at mixed
enzyme kinetics, the external and the internal diffusion limitations with both kinds of
the inhibition: the substrate and the product. The biosensor operation is numerically
analysed with a special emphasis to the conditions at which the biosensor response
change shows a maximal value. By changing physical as well as kinetic parameters
the peak of the biosensor response was achieved at a wide range of the substrate
concentrations. A numerical simulation has been carried out using a finite difference
technique [29,30].
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2 Mathematical model

The amperometric biosensor is considered as an electrode and a relatively thin layer
of an enzyme (enzyme membrane) applied onto the electrode surface. The model
involves three regions: the enzyme layer where the enzymatic reaction as well as the
mass transport by diffusion takes place, a diffusion limiting region where only the mass
transport by diffusion takes place and a convective region where the analyte concen-
tration is maintained constant. Assuming the symmetrical geometry of the electrode
and a homogeneous distribution of the immobilized enzyme in the enzyme membrane,
the mathematical model of the biosensor action can be defined in a one-dimensional-
in-space domain [19].

2.1 Governing equations

The governing equations for a chemical reaction network can be formulated by the
law of mass action [1,18]. Coupling the enzyme-catalysed reaction in the enzyme
layer with the one-dimensional-in-space diffusion, described by Fick‘s law, leads to
the following equations of the reaction–diffusion type (t > 0):

∂se

∂t
= Dse

∂2se

∂x2 − k1eese + k−1ees − k3eesse + k−3eess, (4a)

∂ pe

∂t
= Dpe

∂2 pe

∂x2 + k2ees − k4ee pe + k−4eep, (4b)

∂ee

∂t
= −k1eese + k−1 ees + k2ees − k4ee pe + k−4eep, (4c)

∂ees

∂t
= k1eese − k−1ees − k2ees − k3eesse + k−3eess, (4d)

∂eess

∂t
= k3eesse − k−3eess, (4e)

∂eep

∂t
= k4ee pe − k−4eep, 0 < x < de, (4f)

where x and t stand for space and time, respectively, se(x, t), pe(x, t), ee(x, t),
ees(x, t), eess(x, t) and eep(x, t) are the molar concentrations of the substrate S, the
product P, the enzyme E, the ES complex, the ESS complex and the EP complex,
respectively, de is the thickness of the enzyme layer, Dse and Dpe are the diffusion
coefficients of the substrate and the reaction product, respectively. The enzyme and
the formed ES, ESS and EP complexes are immobilized, and therefore there are no
diffusion terms in the corresponding equations.

Outside the enzyme layer only the mass transport by diffusion of the substrate and
the product takes place. We assume that the external mass transport obeys a finite
diffusion regime,

∂sd

∂t
= Dsd

∂2sd

∂x2 , (5a)
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∂pd

∂t
= Dpd

∂2 pd

∂x2 , de < x < de + dd , t > 0, (5b)

where sd(x, t) and pd(x, t) stand for concentrations of the substrate and the product
in the diffusion layer, dd is the thickness of the external diffusion layer, Dsd and Dpd

are the diffusion coefficients.

2.2 Initial and boundary conditions

Let x = 0 represent the electrode surface, x = de is the boundary between the enzyme
and the diffusion layers, and x = de + dd is the boundary between the diffusion layer
and the bulk solution. The biosensor operation starts when some substrate appears in
the bulk solution (t = 0),

se(x, 0) = 0, pe(x, 0) = 0, 0 ≤ x ≤ de, (6a)

sd(x, 0) = 0, pd(x, 0) = 0, de ≤ x < de + dd , (6b)

sd(de + dd , 0) = s0, pd(de + dd , 0) = 0, (6c)

ee(x, 0) = e0, ees(x, 0) = 0, eess(x, 0) = 0, ep(x, 0) = 0, 0 < x < de, (6d)

where s0 is the concentration of the analyte (substrate) in the bulk solution, e0 is the
enzyme concentration.

Due to the electrode polarization concentration of the reaction product at the elec-
trode surface (x = 0) is permanently reduced to zero [19],

pe(0, t) = 0. (7)

Since the substrate is not ionized, the substrate concentration flux on the electrode
surface equals zero,

Dse

∂se

∂x

∣
∣
∣
∣
x=0

= 0. (8)

The external diffusion layer (de < x < de + dd ) is treated as the Nernst diffusion
layer [29]. According to the Nernst approach the layer of the thickness dd remains
unchanged with time. It is also assumed that away from it the solution is a uniform in
the concentration (t > 0),

sd(de + dd , t) = s0, (9a)

pd(de + dd , t) = 0. (9b)

On the boundary between two regions having different diffusivities, the matching
conditions have to be defined (t > 0),
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Dse

∂se

∂x

∣
∣
∣
∣
x=de

= Dsd

∂sd

∂x

∣
∣
∣
∣
x=de

, se(de, t) = sd(de, t), (10a)

Dpe

∂pe

∂x

∣
∣
∣
∣
x=de

= Dpd

∂pd

∂x

∣
∣
∣
∣
x=de

, pe(de, t) = pd(de, t) . (10b)

According to these conditions, the substrate and the product concentration fluxes
through the external diffusion layer are equal to the corresponding fluxes entering the
surface of the enzyme layer. The concentrations of the substrate as well as the product
from both layers are equal on the boundary between these layers.

2.3 Quasi-steady-state approximation

Some reactions in the network (1–3) are very fast, while others are considerably slower
[2,3]. The large difference of timescales in the reaction network creates difficulties
for simulating the temporal evolution of the network and for understanding the basic
principles of its operation. To sidestep these problems, the quasi-steady-state approx-
imation (QSSA) is often applied [31,32],

∂ee

∂t
≈ ∂ees

∂t
≈ ∂eess

∂t
≈ ∂eep

∂t
≈ 0 . (11)

Assuming the QSSA leads to a reduction in the dimension of the system (4),

∂se

∂t
= Dse

∂2se

∂x2 − k2(ee + ees + eess + eep)se

k−1+k2
k1

(

1 + pe/
k−4
k4

)

+ se

(

1 + se/
k−3
k3

) , (12a)

∂ pe

∂t
= Dpe

∂2 pe

∂x2 + k2(ee + ees + eess + eep)se

k−1+k2
k1

(

1 + pe/
k−4
k4

)

+ se

(

1 + se/
k−3
k3

) . (12b)

The total sum e0 of the concentrations of all the enzyme forms is assumed to be
constant in the entire enzyme layer, e0 = ee + ees + eess + eep.

In order to reduce the number of the main governing parameters of the mathematical
model, the following parameters are introduced:

Vmax = k2e0 = k2(ee + ees + eess + eep), (13a)

kM = k−1 + k2

k1
, ks = k−3

k3
, kp = k−4

k4
, (13b)

where Vmax is the maximal enzymatic rate, kM is the Michaelis–Menten constant, ks

is the substrate inhibition rate, and kp is the product inhibition rate [1,2,31].
Finally, the governing equations (4) at the QSSA reduce to the following equations

(t > 0):

∂se

∂t
= Dse

∂2se

∂x2 − v(se, pe), (14a)
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∂ pe

∂t
= Dpe

∂2 pe

∂x2 + v(se, pe), 0 < x < de, (14b)

where v(se, pe) is the quasi-steady-state reaction rate,

v(se, pe) = Vmaxse

kM
(

1 + pe/kp
) + se (1 + se/ks)

. (15)

In the case of the Michaelis–Menten kinetics, the condition for the QSSA to be
valid is e0 � s0 + kM [32,33].

2.4 Characteristics of the biosensor response

The electric current is measured as a response of a biosensor in a physical experiment.
The current depends on a flux of reaction product at an electrode surface. Thus the
density i of the current at time t is proportional to the gradient of the product at the
electrode surface, i.e. at the border x = 0, as described by Faraday’s law,

i(t) = ne F Dpe

∂pe

∂x

∣
∣
∣
∣
x=0

, (16)

where ne is a number of electrons involved in the electrochemical reaction, and F is
Faraday’s constant (F = 96486 C/mol) [2,19].

We assume that the system (5–10), (14) approaches a steady-state as t → ∞,

ist = lim
t→∞ i(t), (17)

where ist is assumed as the density of the steady-state biosensor current.
The sensitivity is also one of the most important characteristics of the biosensors.

The biosensor sensitivity is usually expressed as the gradient of the biosensor current
with respect to the concentration s0 of the substrate in the bulk. Since the biosen-
sor current as well as the substrate concentration varies even in orders of magnitude,
a dimensionless expression of the sensitivity is preferable [2,34]. Two kinds of the
dimensionless biosensor sensitivity have been investigated in this work. The steady-
state current is used in the case of the first kind, while the maximal current is used for
the second kind,

Bst (s0) = dist (s0)

ds0
× s0

ist (s0)
, (18a)

Bmax(s0) = dimax(s0)

ds0
× s0

imax(s0)
, (18b)

where Bst and Bmax stand for the dimensionless sensitivities of the amperometric
biosensor, ist (s0) is the density of the steady-state biosensor current calculated at the
substrate concentration s0, and imax(s0) is the maximal value of the density of the
biosensor current calculated at the concentration s0.
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3 Numerical simulation

Because of non-linearity of the initial boundary value problem (5–10), (14) no analyti-
cal solutions are possible [16,19,29]. Hence the numerical simulation of the biosensor
response was used. The simulation was carried out using the finite difference technique
[29,30]. An implicit finite difference scheme was built on a uniform discrete grid with
200 points in space direction [11,35,36]. The simulator has been programmed by the
authors in C++ language [37].

In the numerical simulation, the biosensor response time was assumed as the time
when the change of the biosensor current over time remains very small during a rela-
tively long term. A special dimensionless decay rate ε was used,

tr = min
i(t)>0

{

t : t

i(t)

∣
∣
∣
∣

di(t)

dt

∣
∣
∣
∣
< ε

}

, i(tr ) ≈ ist , (19)

where tr is the biosensor response time. The decay rate value ε = 10−3 was used in
the calculations.

The mathematical model and the numerical solution have been validated using
known analytical solution for a two layer model of the amperometric biosensor [19].
When solving the problem analytically, a few assumptions and model simplifications
have to be introduced [34]. First of all it is considered that neither substrate nor product
inhibition is observed during the biosensor operation (i. e., ks → ∞, kp → ∞). This
assumption simplifies the expression of the general reaction rate (15) as follows:

v(se, pe) ≈ Vmaxse

kM + se
. (20)

Assuming (20), the initial boundary value problem (5–10), (14) can be solved ana-
lytically in the cases when the reaction function (15) approaches to a linear function
[19]. At relatively low concentrations of the substrate when s0 � kM , the reaction
rate v takes the following linear form:

v(se, pe) ≈ Vmaxse

kM
. (21)

Assuming (21), the density ist of the steady-state current can be expressed as follows
[19]:

ist = ne F Dpe s0
1

de + dd

(

de + dd × Dsd − �Dse sinh �/ cosh �

Dsd + �Dse (dd/de) sinh �/ cosh �

)

×
(

�Dse dd

de
× sinh �

cosh �
+ Dse Dpd

Dpe

(

1 − 1

cosh �

))

/(Dpd de + Dpe dd), (22)

where �2 is the diffusion modulus which was introduced in (26).
In all the numerical experiments the following values were kept constant:
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Dse = Dpe = 100 µm2/s, Dsd = 2Dse , Dpd = 2Dpe ,

kM = 0.01 M, de = 10 µm, dd = 300 µm, ne = 1.
(23)

The numerical solution of the model (5–10), (14) was compared with the analytical
solution (22) at ks = 104M, kp = 104M and s0 = 10−4M = 0.01kM . The relative
difference between the numerical and analytical solutions was less than 0.04%.

4 Dimensionless model

In order to define the main governing parameters of the mathematical model, the
dimensionless mathematical model has been derived.

For simplicity, the concentrations s and p of the substrate and the product, respec-
tively, can be defined in entire domain x ∈ [0, de + dd ] as follows (t ≥ 0):

s =
{

se, 0 ≤ x ≤ de,

sd , de < x ≤ de + dd
(24a)

p =
{

pe, 0 ≤ x ≤ de,

pd , de < x ≤ de + dd .
(24b)

Both concentration functions (s and p) are continuous in the entire domain x ∈
[0, de + dd ]. Table 1 presents all the dimensionless parameters of the model.

The governing equations (14) in dimensionless coordinates are expressed as
follows:

∂S

∂T
= ∂2S

∂ X2 − �2 S
(

1 + P/K p
) + S (1 + S/Ks)

, (25a)

∂ P

∂T
= Dpe

Dse

∂2 P

∂ X2 + �2 S
(

1 + P/K p
) + S (1 + S/Ks)

, (25b)

Table 1 Dimensional and
dimensionless parameters

Parameter Dimensional Dimensionless

Time t, s T = t Dse /d2
e

Membrane thickness de, cm δe = de/de = 1

Diffusion layer thickness dd , cm δd = dd/de

Distance from electrode x, cm X = x/de

Substrate concentration s, M S = s/kM , S0 = s0/kM

Product concentration p, M P = p/kM

Michaelis–Menten constant kM , M KM = kM/kM = 1

Substrate inhibition constant ks , M Ks = ks/kM

Product inhibition constant k p, M K p = k p/kM

Current density i, A cm−2 I = ide/(ne F Dpe kM )
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where

�2 = Vmaxd2
e

Dse kM
, 0 < X < 1, T > 0. (26)

The governing equations (5) take the following form:

∂S

∂T
= Dsd

Dse

∂2S

∂ X2 , (27a)

∂ P

∂T
= Dpd

Dse

∂2 P

∂ X2 , 1 < X < 1 + δd , T > 0. (27b)

The initial conditions (6) transform to the following conditions:

S(X, 0) = 0, P(X, 0) = 0, 0 ≤ X < 1 + δd , (28a)

S(1 + δd , 0) = S0, P(1 + δd , 0) = 0. (28b)

The boundary conditions (7– 9) are converted to the following conditions (T > 0):

P(0, T ) = 0, (29a)
∂S

∂ X

∣
∣
∣
∣

X=0
= 0, (29b)

S(1 + δd , T ) = S0, (29c)

P(1 + δd , T ) = 0. (29d)

The matching conditions (10) take the following form:

∂S

∂ X

∣
∣
∣
∣

X=1−
= Dsd

Dse

∂S

∂ X

∣
∣
∣
∣

X=1+
, (30a)

Dpe

Dse

∂ P

∂ X

∣
∣
∣
∣

X=1−
= Dpd

Dse

∂ P

∂ X

∣
∣
∣
∣

X=1+
. (30b)

Assuming the same diffusivities for both species, the substrate and the product,
the dimensionless model (25–30) contains only six following parameters: δd—the
thickness of the diffusion layer, S0—the concentration of the substrate in the bulk,
Ks—the substrate inhibition constant, K p—the product inhibition constant, �2—the
diffusion modulus, and Drel = Dsd /Dse = Dpd /Dpe —the ratio of the diffusivity in
the diffusion layer to the diffusivity in the enzyme layer.

5 Results and discussion

Using numerical simulation, peculiarities of the biosensor action has been investigated
at different values of the model parameters.
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5.1 Dynamics of the biosensor response

Figure 1 shows the dynamics of the biosensor current. The biosensor action was sim-
ulated at different concentrations of the substrate (1 ≤ S0 ≤ 4), a mean value of the
diffusion modulus (�2 = 1) and moderate values of the substrate (Ks = 0.1) as well
as the product (K p = 0.1) inhibition constant.

At moderate substrate concentrations (S0 ≤ 2.2), the dimensionless biosensor cur-
rent I is a monotonously increasing function of dimensionless time T . However, at
relatively high substrate concentrations (S0 > 2.2) the current I becomes a non-
monotonous function of dimensionless time T . In the case of S0 = 4, the maximal
biosensor current is even about 4.3 times greater than the steady-state current. In all the
cases of the non-monotony of the biosensor current (S0 > 2.2), the maximal currents
are practically the same.

Calculations show that the appearance of the maximal response value at high sub-
strate concentrations is associated with the substrate inhibition. No non-monotony in
the behaviour of the response of the amperometric biosensors is usually observed in
the absence of the inhibition [1,9,16,19,27].

From the curves depicted in Fig. 1 one can also observe another important relation-
ship: the steady-state current Ist is directly proportional to the substrate concentration
S0 at low substrate concentrations (S0 ≤ 2.2) and inversely proportional at high sub-
strate concentrations. This effect is more thoroughly investigated in the next section.

5.2 Biosensor response vs. substrate concentration

The dependence of the maximal as well as the steady-state biosensor current on the sub-
strate concentration was investigated at a constant substrate inhibition rate (Ks = 0.1)
and different rates of the product inhibition. The biosensor response was simulated at
relatively high product inhibition rate (K p = 0.01), relatively low product inhibition

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 10  100  1000

I

T

1.0

2.0

2.2

2.32.43.0
4.0

Fig. 1 Dynamics of the biosensor response at different values of the substrate concentration. Numbers on
the curves show values of S0, �2 = 1, Ks = 0.1, K p = 0.1
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I s
t ,

  I
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S0

1
2
3
4
5
6

Fig. 2 The dependence of the maximal Imax (2, 4, 6) and the steady-state Ist (1, 3, 5) currents on the
substrate concentration S0 at three rates (K p) of the product inhibition: ∞ (no inhibition) (1, 2), 0.1 (3, 4)
and 0.01 (5, 6), �2 = 1, Ks = 0.1

rate (K p = 0.1) and in the absence of the product inhibition (K p → ∞). In the case of
no product inhibition, the reaction scheme (1–3) reduces to scheme (1), (2). Figure 2
shows calculated the maximal Imax and the steady-state Ist dimensionless biosensor
currents versus the dimensionless substrate concentration S0.

The results of the numerical simulation are depicted in Fig. 2.
When the product inhibition rate is relatively low (K p = 0.1, curves 3 and 4)

and is equal to the substrate inhibition rate (K p = Ks = 0.1), the behaviour of the
biosensor response is very similar to that which is observed in the case of absence of
the product inhibition. As one can see in Fig. 2, a very sharp response change occurs
when the substrate concentration S0 is between 2.3 and 2.5. At these concentrations
the steady-state and the maximal currents sharply diverge.

When the product inhibition rate is relatively high (K p = 0.01), the sharp decrease
in the response does not occur. The point where the maximal and the steady-state
responses start to diverge is slightly shifted to the left (S0 = 1.9).

The maximal responses are distinct for different rates of the product inhibition,
especially at high substrate concentrations (S0 ≥ 2.3). Obvious correlation with the
product inhibition rate is observed. However, the steady-state currents at S0 ≥ 3 are
undistinguishable at different rates of the product inhibition.

5.3 Non-monotony of biosensor response

The effect of the divergence of the maximal and the steady-state biosensor currents
was also observed in the case when only the substrate inhibition was considered [27].
This was explained by a multi-concentration generation that was also confirmed by
the analytical solution of a simplified model with the external diffusion limitation at
the steady-state conditions [12]. The biosensor response was then investigated only
at moderate values of the diffusion modulus when the response change showed a
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 0.1

 1

 10

 100

 0.01  0.1  1  10  100

S d
iv

Φ2

Kp = 0.1

Kp → ∞

Fig. 3 The dependence of the substrate concentration Sdiv at which the response shows a maximal value
on the diffusion modulus �2 at two rates of the product inhibition K p :∞ and 0.1, Ks = 0.1

maximal value at the substrate concentration comparable to the Michaelis–Menten
constant kM . Below the dependence of the divergence of the maximal and the steady-
state biosensor currents on the substrate concentration is investigated in detail at a wide
ranges of the diffusion modulus and the substrate as well as the product inhibition rate.

To investigate the effect of the diffusion modulus �2 on the non-monotony of the
biosensor response we introduce the minimal dimensionless substrate concentration
Sdiv at which the response shows a maximal value,

Sdiv(�
2, K p, Ks) = min{S0 : Imax(�

2, K p, Ks, S0) �= Ist (�
2, K p, Ks, S0)}, (31)

where Imax(�
2, K p, Ks, S0) and Ist (�

2, K p, Ks, S0) are the dimensionless the max-
imal and the steady-state biosensor currents, respectively, calculated at appropriate
values of �2, K p, Ks and S0. At any substrate concentration S0 less than Sdiv, the
maximal and the steady-state currents are identical.

The results of the numerical simulation are depicted in Fig. 3. As one can see from
the curves, the concentration Sdiv continuously and non-linearly increases with an
increase in �2. The concentration Sdiv is practically independent from the product
inhibition rate K p when the diffusion modulus is relatively low (�2 ∈ [0.01, 0.1]).
When the diffusion modulus is relatively high (�2 ∈ [1, 100]), the product inhibition
rate notably affects the Sdiv. A reason of this feature can be obtained from the structure
of the governing equations (25). The influence of the biochemical reaction kinetics to
whole process decreases when the diffusion modulus decreases. In other words, the
concentration Sdiv notably depends on the the product inhibition rate K p only if the
biosensor response is controlled by the diffusion (�2 	 1). If the biosensor response
is mainly determined by the enzyme kinetics (�2 � 1) then Sdiv is independent from
the K p. When the biosensor response is controlled by the diffusion, the value of Sdiv
calculated in the case of no product inhibition (K p → ∞) is higher than that calculated
in the case of the product inhibition (K p = 0.1).
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Fig. 4 The dependence of biosensor sensitivity Bmax (a) as well as Bst (b) on the substrate concentration S0

5.4 Biosensor sensitivity vs. substrate concentration

To investigate the dependence of the biosensor sensitivity on the substrate concen-
tration, the biosensor response was simulated at two values of the substrate as well
as the product inhibition rates and a wide range of substrate concentrations (0.01 ≤
S0 ≤ 100). Having the simulated responses, both kinds of the biosensor dimensionless
sensitivity, Bmax and Bst , were calculated. Calculation results are depicted in Fig. 4.

Looking at Fig. 4 one can notice several distinctly different shapes of curves. Curves
1 and 2 corresponding to the biosensors with no substrate inhibition contain noticeably
wider segments of the extremely high sensitivity (Bmax and Bst equal approximately
1) than those corresponding to the biosensors with the substrate inhibition (curves 3
and 4). The substrate inhibition of the rate Ks = 0.1 leads to an approximately tenfold
decrease in the upper boundary of the substrate concentrations at which the biosensor
operation is highly sensitive. Both kinds of the sensitivity (Bmax and Bst ) of the biosen-
sors with the substrate inhibition reach zero at the substrate concentration S0 between
2.1 and 2.5, while the biosensors with no substrate inhibition show a fairly good (not
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less than 0.5) sensitivity up to the concentration of S0 = 16 when Bmax ≈ 0.5. The
effect of the product inhibition on the biosensor sensitivity (Bmax as well as Bst ) is
rather low.

One can see in Fig. 4 that the sensitivity of the biosensors with the substrate inhi-
bition can be even negative. A negative biosensor sensitivity means that the maximal
(in the case of Bmax) or the steady-state (in the case of Bst ) current decreases with
an increase in the substrate concentration (see Fig. 2). In the case of the sensitiv-
ity based on the maximal response (Fig. 4a), negative values of Bmax remains near
zero (0.02 < |Bmax| < 0.06). The biosensors acting under the substrate inhibition of
Ks = 0.1 and measuring only the maximal current are practically inapplicable to the
prediction of the substrate concentrations higher than about 2kM (S0 > 2, s0 > 2kM ).

When comparing the sensitivity Bst with the sensitivity Bmax of the biosensors with
the substrate inhibition, one can see noticeable difference in the shape of the curves
presenting both kinds of the biosensor sensitivity. However, the difference is only
observed at relatively high substrate concentrations (S0 > 2) when both sensitivities,
Bmax and Bst , are negative.

The biosensors acting under the substrate inhibition and supporting the sensitivity
Bst can be successfully applied to predict the substrate concentrations in the range
where Bst is negative. Such intelligent biosensor should support two calibration curves,
one for the concentrations at which the response is directly proportional to the substrate
concentration, and the other for the concentrations at which the response is inversely
proportional to the substrate concentration.

In the case with only the substrate inhibition (curve 3 in Fig. 4b), the biosensor
sensitivity Bst reaches its negative peak at S0 = 2.4 (Bst = −12.2). In the case with
the substrate and the product inhibition (curve 4), the Bst reaches its minimal value
at S0 = 2.3 (Bst = −9.0). The points where the sensitivity curves show minimal
values are the points where the biosensor steady-state response curves are the most
steeply declined (see Fig. 5). At these points the substrate concentration can be very
accurately predicted. At higher substrate concentrations up to S0 = 100, the biosensor
shows also very good values of sensitivity (Bst steadies at about −0.9, see Fig. 4b).
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Fig. 5 The dependence of the steady-state dimensionless current Ist on the substrate concentration S0
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However regardless high absolute values of the sensitivity Bst , the biosensors with
the substrate inhibition has a serious drawback. The measured steady-state current
is not enough for the substrate concentration prediction. As one can clearly see in
Fig. 5 that the steady-state current Ist is a non-monotonous function of the substrate
concentration S0. Because of this, an additional information is required to predict S0
unambiguously. For instance, in addition to the steady-state current Ist , an intelligent
biosensor could also take into consideration the maximal current Imax. If Ist < Imax
then the biosensor should use the calibration curve where Ist is inversely proportional
to S0. Otherwise, the concentration S0 can be predicted under assumption of the pro-
portionality of Ist to S0. The ambiguity in the concentration prediction can be also
solved if the substrate concentration S0 is approximately known prior to the biosensor
action.

After the examination of curves in Fig. 4 we can conclude that the measurement of
the steady-state biosensor current is more useful than the measurement of the maxi-
mal current. In the case of the absence of the substrate inhibition, the measurement of
the steady-state or maximal current makes no difference. However, in the case of the
substrate inhibition, the measurement of steady-state current Ist could be more useful
because of the possibility to measure higher substrate concentrations.

6 Conclusions

The mathematical model (5–10), (14) of the amperometric biosensor with the sub-
strate and the product inhibition can be successfully used to investigate kinetic pecu-
liarities of the biosensor response. The corresponding dimensionless mathematical
model (25–30) can be used as a framework for numerical investigation of the impact
of the model parameters on the biosensor response and to optimize the biosensor
configuration.

The substrate inhibition leads to appearance of the maximal biosensor current dif-
ferent from the steady-state current (Figs. 1, 2 and 5). A complimentary product inhibi-
tion reduces the sharpness of the current drop (Fig. 2). The divergence of the maximal
and the steady-state biosensor currents directly depends on the diffusion modulus �2.
The minimal dimensionless substrate concentration, at which the response shows a
maximal value, is a monotonously increasing function of �2 (Fig. 3).

At low substrate concentrations the steady-state as well as the maximal current
can be equally used to predict the substrate concentration independent of the rate of
the substrate as well as the product inhibition. In the case of the substrate inhibition,
knowing both biosensor currents, the steady-state and the maximal, can be applied
to significantly prolong the biosensor calibration curve. The effect of the product
inhibition on the biosensor sensitivity is noticeably lower than that of the substrate
inhibition.
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